59 research outputs found

    Multi-Client Functional Encryption for Separable Functions

    Get PDF
    In this work, we provide a compiler that transforms a single-input functional encryption scheme for the class of polynomially bounded circuits into a multi-client functional encryption (MCFE) scheme for the class of separable functions. An n-input function f is called separable if it can be described as a list of polynomially bounded circuits f^1, ... , f^n s.t. f(x_1, ... , x_n)= f^1(x_1)+ ... + f^n(x_n) for all x_1 ,... , x_n. Our compiler extends the works of Brakerski et al. [Eurocrypt 2016] and of Komargodski et al. [Eurocrypt 2017] in which a generic compiler is proposed to obtain multi-input functional encryption (MIFE) from single-input functional encryption. Our construction achieves the stronger notion of MCFE but for the less generic class of separable functions. Prior to our work, a long line of results has been proposed in the setting of MCFE for the inner-product functionality, which is a special case of a separable function. We also propose a modified version of the notion of decentralized MCFE introduced by Chotard et al. [Asiacrypt 2018] that we call outsourceable mulit-client functional encryption (OMCFE). Intuitively, the notion of OMCFE makes it possible to distribute the load of the decryption procedure among at most n different entities, which will return decryption shares that can be combined (e.g., additively) thus obtaining the output of the computation. This notion is especially useful in the case of a very resource consuming decryption procedure, while the combine algorithm is non-time consuming. We also show how to extend the presented MCFE protocol to obtain an OMCFE scheme for the same functionality class

    On Adaptive Security of Delayed-Input Sigma Protocols and Fiat-Shamir NIZKs

    Get PDF
    We study adaptive security of delayed-input Sigma protocols and non-interactive zero-knowledge (NIZK) proof systems in the common reference string (CRS) model. Our contributions are threefold: - We exhibit a generic compiler taking any delayed-input Sigma protocol and returning a delayed-input Sigma protocol satisfying adaptive-input special honest-verifier zero-knowledge (SHVZK). In case the initial Sigma protocol also satisfies adaptive-input special soundness, our compiler preserves this property. - We revisit the recent paradigm by Canetti et al. (STOC 2019) for obtaining NIZK proof systems in the CRS model via the Fiat-Shamir transform applied to so-called trapdoor Sigma protocols, in the context of adaptive security. In particular, assuming correlation-intractable hash functions for all sparse relations, we prove that Fiat- Shamir NIZKs satisfy either: (i) Adaptive soundness (and non-adaptive zero-knowledge), so long as the challenge is obtained by hashing both the prover’s first round and the instance being proven; (ii) Adaptive zero-knowledge (and non-adaptive soundness), so long as the challenge is obtained by hashing only the prover’s first round, and further assuming that the initial trapdoor Sigma protocol satisfies adaptive-input SHVZK. - We exhibit a generic compiler taking any Sigma protocol and returning a trapdoor Sigma protocol. Unfortunately, this transform does not preserve the delayed-input property of the initial Sigma protocol (if any). To complement this result, we also give yet another compiler taking any delayed-input trapdoor Sigma protocol and returning a delayed-input trapdoor Sigma protocol with adaptive-input SHVZK. An attractive feature of our first two compilers is that they allow obtaining efficient delayed-input Sigma protocols with adaptive security, and efficient Fiat-Shamir NIZKs with adaptive soundness (and non-adaptive zero-knowledge) in the CRS model. Prior to our work, the latter was only possible using generic NP reductions

    Threshold Garbled Circuits and Ad Hoc Secure Computation

    Get PDF

    Etherless Ethereum Tokens: Simulating Native Tokens in Ethereum

    Get PDF

    Round and computational efficiency of two-party protocols

    Get PDF
    2016 - 2017A cryptographic protocol is defined by the behaviour of the involved parties and the messages that those parties send to each other. Beside the functionality and the security that a cryptographic protocol provides, it is also important that the protocol is efficient. In this thesis we focus on the efficiency parameters of a cryptographic protocol related to the computational and round complexity. That is, we are interested in the computational cost that the parties involved in the protocol have to pay and how many interactions between the parties are required to securely implement the functionality which we are interested in. Another important aspect of a cryptographic protocol is related to the computational assumptions required to prove that the protocol is secure. The aim of this thesis is to improve the state of the art with respect to some cryptographic functionalities where two parties are involved, by providing new techniques to construct more efficient cryptographic protocols whose security can be proven by relying on better cryptographic assumptions. The thesis is divided in three parts. In the first part we consider Secure Two-Party Computation (2PC), a cryptographic technique that allows to compute a functionality in a secure way. More precisely, there are two parties, Alice and Bob, willing to compute the output of a function f given x and y as input. The values x and y represent the inputs of Alice and Bob respectively. Moreover, each party wants to keep the input secret while allowing the other party to correctly compute f(x, y). As a first result, we show the first secure 2PC protocol with black box simulation, secure under standard and generic assumption, with optimal round complexity in the simultaneous message exchange model. In the simultaneous message exchange model both parties can send a message in each round; in the rest of this thesis we assume the in each round only one party can send a message. We advance the state of the art in secure 2PC also in a relaxed setting. More precisely, in this setting a malicious party that attacks the protocol to understand the secret input of the honest party, is forced to follow the protocol description. Moreover, we consider the case in which the parties want to compute in a secure way the Set-Membership functionality. Such a functionality allows to check whether an element belongs to a set or not. The proposed protocol improves the state of the art both in terms of performance and generality. In the second part of the thesis we show the first 4-round concurrent non-malleable commitment under one-way functions. A commitment scheme allows the sender to send an encrypted message, called commitment, in such a way that the message inside the commitment cannot be opened until that an opening information is provided by the sender. Moreover, there is a unique way in which the commitment can be open. In this thesis we consider the case in which the sender sends the commitment (e.g. trough a computer network) that can be eavesdropped by an adversary. In this setting the adversary can catch the commitment C and modify it thus obtaining a new commitment C0 that contains a message related to the content of C. A non-malleable commitment scheme prevents such attack, and our scheme can be proved secure even in the case that the adversary can eavesdrop multiple commitments and in turn, compute and send multiple commitments. The last part of the thesis concerns proof systems. Let us consider an NP-language, like the language of graph Hamiltonicity. A proof system allows an entity called prover to prove that a certain graph (instance) contains a Hamiltonian cycle (witness) to another entity called verifier. A proof system can be easily instantiated in one round by letting the prover to send the cycle to the verifier. What we actually want though, is a protocol in which the prover is able to convince the verifier that a certain graph belongs to the language of graph Hamiltonicity, but in such a way that no information about the cycle is leaked to the verifier. This kind of proof systems are called Zero Knowledge. In this thesis we show a non-interactive Zero-Knowledge proof system, under the assumption that both prover and verifier have access to some honestly generated common reference string (CRS). The provided construction improves the state of the art both in terms of efficiency and generality. We consider also the scenario in which prover and verifier do not have access to some honestly generated information and study the notion of Witness Indistinguishability. This notion considers instances that admit more than one witness, e.g. graphs that admit two distinct Hamiltonian cycle (as for the notion of Zero Knowledge, the notion of Witness Indistinguishability makes sense for all the languages in NP, but for ease of exposition we keep focusing our attention of the language of graph Hamiltonicity). The security notion of Witness-Indistinguishability ensures that a verifier, upon receiving a proof from a prover, is not able to figure out which one of the two Hamiltonian cycles has been used by the prover to compute the proof. Even though the notion of Witness Indistinguishability is weaker than the notion of Zero Knowledge, Witness Indistinguishability is widely used in many cryptographic applications. Moreover, given that a Witness-Indistinguishable protocol can be constructed using just three rounds of communication compared to the four rounds required to obtain Zero Knowledge (with black-box simulation), the use of Zero-Knowledge as a building block to construct a protocol with an optimal number of rounds is sometimes prohibitive. Always in order to provide a good building block to construct more complicated cryptographic protocols with a nice round complexity, a useful property is the so called Delayed-Input property. This property allows the prover to compute all but the last round of the protocol without knowing the instance nor the witness. Also, the Delayed-Input property allows the verifier to interact with the prover without knowing the instance at all (i.e. the verifier needs the instance just to decide whether to accept or not the proof received by the prover). In this thesis we provide the first efficient Delayed-Input Witness-Indistinguishable proof system that consists of just three round of communication. [edited by author]XVI n.s

    A Transform for NIZK Almost as Efficient and General as the Fiat-Shamir Transform Without Programmable Random Oracles

    Get PDF
    The Fiat-Shamir (FS) transform is a popular technique for obtaining practical zero-knowledge argument systems. The FS transform uses a hash function to generate, without any further overhead, non-interactive zero-knowledge (NIZK) argument systems from public-coin honest-verifier zero-knowledge (public-coin HVZK) proof systems. In the proof of zero knowledge, the hash function is modeled as a programmable random oracle (PRO). In TCC 2015, Lindell embarked on the challenging task of obtaining a similar transform with improved heuristic security. Lindell showed that, for several interesting and practical languages, there exists an efficient transform in the non-programmable random oracle (NPRO) model that also uses a common reference string (CRS). A major contribution of Lindell’s transform is that zero knowledge is proved without random oracles and this is an important step towards achieving efficient NIZK arguments in the CRS model without random oracles. In this work, we analyze the efficiency and generality of Lindell’s transform and notice a significant gap when compared with the FS transform. We then propose a new transform that aims at filling this gap. Indeed our transform is almost as efficient as the FS transform and can be applied to a broad class of public-coin HVZK proof systems. Our transform requires a CRS and an NPRO in the proof of soundness, similarly to Lindell’s transform

    Concurrent Non-Malleable Commitments (and More) in 3 Rounds

    Get PDF
    The round complexity of commitment schemes secure against man-in-the-middle attacks has been the focus of extensive research for about 25 years. The recent breakthrough of Goyal et al. [22] showed that 3 rounds are sufficient for (one-left, one-right) non-malleable commitments. This result matches a lower bound of [41]. The state of affairs leaves still open the intriguing problem of constructing 3-round concurrent non-malleable commitment schemes. In this paper we solve the above open problem by showing how to transform any 3-round (one-left one-right) non-malleable commitment scheme (with some extractability property) in a 3-round concurrent nonmalleable commitment scheme. Our transform makes use of complexity leveraging and when instantiated with the construction of [22] gives a 3-round concurrent non-malleable commitment scheme from one-way permutations secure w.r.t. subexponential-time adversaries. We also show a 3-round arguments of knowledge and a 3-round identification scheme secure against concurrent man-in-the-middle attacks

    Round-Optimal and Communication-Efficient Multiparty Computation

    Get PDF
    Typical approaches for minimizing the round complexity of multiparty computation (MPC) come at the cost of increased communication complexity (CC) or the reliance on setup assumptions. A notable exception is the recent work of Ananth et al. [TCC 2019], which used Functional Encryption (FE) combiners to obtain a round optimal (two-round) semi-honest MPC in the plain model with a CC proportional to the depth and input-output length of the circuit being computed—we refer to such protocols as circuit scalable. This leaves open the question of obtaining communication efficient protocols that are secure against malicious adversaries in the plain model, which we present in this work. Concretely, our two main contributions are: 1) We provide a round-preserving black-box compiler that compiles a wide class of MPC protocols into circuit-scalable maliciously secure MPC protocols in the plain model, assuming (succinct) FE combiners. 2) We provide a round-preserving black-box compiler that compiles a wide class of MPC protocols into circuit-independent— i.e., with a CC that depends only on the input-output length of the circuit—maliciously secure MPC protocols in the plain model, assuming Multi-Key Fully-Homomorphic Encryption (MFHE). Our constructions are based on a new compiler that turns a wide class of MPC protocols into k-delayed-input function MPC protocols (a notion we introduce), where the function that is being computed is specified only in the k-th round of the protocol. As immediate corollaries of our two compilers, we derive (1) the first round-optimal and circuit-scalable maliciously secure MPC protocol, and (2) the first round-optimal and circuit-independent maliciously secure MPC protocol in the plain model. The latter achieves the best to-date CC for a round-optimal maliciously secure MPC protocol. In fact, it is even communication-optimal when the output size of the function being evaluated is smaller than its input size (e.g., for boolean functions). All of our results are based on standard polynomial time assumptions
    • …
    corecore